Skip to main content

Actionable Solutions to Counter Data Mining Issues by Hadoop

Competition has been in the air of the business biosphere. But in the present scenario, it’s hazier than ever. Have you ever seen the messaging app as an end-to-end solutions providing landscape in ages? Today we have FB messenger to which artificial intelligence makes smarter like a human by senses. How did Mark Zuckerberg conceive that idea? It simply is the miracle of iconic decision driven from big-data.

Why big data?
Big data hides transformative decisions. Let’s understand through this example. Do you know why retailers call to outsourcing market research? To be at the top is undoubtedly the biggest goal to achieve. But without capturing deep insight, topnotch is just a dream. The actionable decision-making underlies this insight. Let’s say, retailers come to know what customers need and what their attitude is through mining their data. By blending them up in the driven decisions, viable plans are drafted. As a result, the customers get motivated to buy. On its basis, the retailers come in win-win situation. Competitive edge is all theirs while the relevant personalized offers come in to the customers’ pocket.

   
If talk about telecom industry, it stays busy in deriving personalized offers to collect fat revenue. Manufacturing industry mines big data to maintain optimal maintenance cycle. By discovering the updated tools, it replaces the rotten & outdated components before they fail. Increased up time & customer satisfaction tell its viability. Even, government entities mine data for shelling against cyber-attacks.

Issues that need to be conquered while data mining:  

1. Structuring unstructured data: Suppose the startup entrepreneur wants to drill the audience behavior for which it requires real time data. With the help of an outsourcing data mining company, it scrapped APIs of various eCommerce websites. But the data can be in different format. And who knows would it be adaptive to its system or not. Therefore, its structuring is a real challenge.
With hadoop- the infrastructure software, you can store and process the huge data sets in a cost-effective manner.

2. Productive results are tricky: Suppose you have unprocessed data in tera bytes which would require putting it on the server. But for processing, you need to transfer it to the machines where there is the processing software. While transmitting that huge data from server to processing machines, an agile and speedy network should be there. But what if that network is so slow? What if the network has loops for hackers? Likewise, there are several issues the shoot during transmission of data sets.
Hadoop storage can help you combat this problem easily. By channelizing data processing system or software to the nodes or servers where data repository is, it resolves this problem.

3. Scarcity of resources: Data management is a complex procedure that involves many resources, like servers, processing software, data pro and data analysts. Only professional and experience data analysts can take out viable solutions. But their retention and sustainability is rare.
Hadoop is a professional itself that processes and manages data like a veteran.

4. Quick spinning of tech-transformation: It’s quite common view that tech gets developed rapidly. Suppose you developed a website and the very next day an integrated feature is discovered to embed the artificial intelligence based-chat or messaging bot. And your web developers have no expertise over integrating such feature. Therefore, it’s a major challenge to battle it out.

However Hadoop is adaptive and quite relieving platform for data outsourcing and processing organizations. But progressive transformation is quite hard to catch on.

Comments

Popular posts from this blog

Retail Market Analysis

Let us first understand the meaning of Retail Marketing. Retail marketing is the range of activities performed by a retailer to develop knowledge, awareness and sales of the company’s products. This is quite different from other types of marketing because of the factors and elements of the retail trade like selling finished goods in small number or amount to the consumer or end user, generally from a fixed location. Retail marketing uses the common principles of the marketing blend i.e. product, price, place and promotion. A study of retail marketing at university level includes effective vending and selling strategies, shopping and consumer behavior, branding i.e. categorizing and advertising. Retail marketing is especially essential to small retailers trying to compete against large chain stores.

Advantages and Disadvantages of Outsourcing Data Entry Services

Outsourcing data entry project can be advantageous as well as disadvantageous. Before nodding for it, look at its cost, risk, repo and track record to avoid the bundles of inaccuracies in data entry .   Outsourcing has become familiar term for acquiring data entry services. Advantages and disadvantages walk hand in hand in terms of cost, risk, repo and track records of the data services. An entrepreneur should be aware of the facts regarding data entries that can make them enriched overnight or can land you behind bars in allegation of hacking or misinterpreting or loosing data. Reduced overhead expenses as well as risk, cost-effective, time to focus on key areas, improved production are the merits or advantages that certify data entry services should be outsourced. On the contrary, data hacking, low quality of data entries, exceeding the deadlines for the project, over expenses and streamlining process of these appear as the demerits or disadvantages of the outsourcing...

Excellent Data Entry Clerk’s Qualities for Data Entry Services

What a qualified and skilled professional wants? Obviously, one looks forward to handsome salary and perks apart from satisfaction. Big-data is rolled out with the advent of internet. Heydays are on for expert data entry clerks and analysts. Payscale.com states an average salary worth $52,188 for an entry level data analyst in the US. In India, the vetted professional of SAS, R, data mining and data warehouse earns revenue worth Rs. 309,785 on an average. Just imagine, how much bigger would be the salary package of an adept entry-level clerk and analyst! Having good typing speed and knowledge of MS Excel fulfills prior requirements only. The candidate needs to be the master of many more skills. Data entry services based companies accommodate such aspirants those have:           Technical Skills:   Speedy typing assures an entry ticket to the budding data operators. And if their memory has all shortcut keys of MS Excel and Word, t...